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Abstract
Semi-invariants for the linear parabolic equations with two independent
variables (time variable t and space variable x) and one dependent variable
u are derived under the transformation of the independent variables, by using
the infinitesimal method. We also obtain the joint invariant equation for the
above-mentioned equation under equivalence transformation. In fact, we
prove a necessary and sufficient condition for a (1 + 1) parabolic equation
to be reducible via a local equivalence transformation to the one-dimensional
classical heat equation. This result provides practical criteria for reduction.
Finally, examples of (1 + 1) Fokker–Planck equations from applications are
given to verify the results obtained.

PACS numbers: 02.30.Hq, 04.20.Jb

1. Introduction

The Fokker–Planck (FP) equation was derived by Fokker [9] and Planck [22] for the distribution
function describing Brownian motion. The Boltzmann equation, which was the first equation
of motion derived for the distribution function of a dilute gas in position and velocity space,
reduces to the FP equation in a system in which one particle is very large compared to the others.
The FP equation is merely an equation of motion for the distribution function of fluctuation in
a stochastic way. Mathematically, the FP equation is a linear second-order partial differential
equation of parabolic type. Generally speaking, it is a diffusion equation with an additional
first-order derivative with respect to the x term. In the mathematical literature, the FP equation
is also called a forward Kolmogorov equation and describes the evolution of the transition
probability density for a diffusion process.
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Besides kinetic theory, the FP equation models a wide variety of phenomena arising in
diverse fields: probability theory (describing the Markov process, an FP equation appears as
the master equation [16]), laser physics (the statistics of light may very well be treated by a FP
equation [1]), electronics (supersonic conductors, Josephson tunnelling junction, relaxation
of dipoles, second-order phase-locked loops [2, 8, 12, 25]), an optimal portfolio problem
[3], etc.

In the case of one space variable, to which we restrict ourselves here just for the sake of
simplicity, the FP equation is included in the parabolic equation

ut = a(t, x)uxx + b(t, x)ux + c(t, x)u (1)

where u is the unknown function, t and x are the time and space coordinates, respectively, and
a, b and c are smooth functions of t and x, assumed to be given.

The general one-dimensional FP equation is of the form [10, 23]

∂u

∂t
= − ∂

∂x
[A(t, x)u] +

1

2

∂2

∂x2
[B(t, x)u] (2)

where u is the probability density and A and B are the coefficients of drift and diffusion,
respectively.

Lie [18] first systematically investigated the symmetry properties of (1). He obtained
the complete group classification of parabolic equations of the form (1). As a matter of fact,
Lie provided all the canonical forms of parabolic equations (1) which admit nontrivial point
symmetries—he found four, namely, 0, 1, 3 and 5 symmetry cases apart from the trivial
symmetries of homogeneity and superposition. Lie also developed methods of integrability
of these equations.

Bluman and Cole [4, 6] used the Lie method to determine invariant solutions (also called
similarity solutions) of the classical heat equation which was later classified in Olver [20],
according to the optimal system of one-dimensional subalgebras. Bluman [5] also found
the invariant solutions for (1 + 1) FP equations (1). Further, since an (1 + 1) FP equation is
a particular case of (1), every one-dimensional FP equation with a five-dimensional group
of Lie point symmetries can be locally transformed into the heat equation and vice versa.
This is a special case of Lie’s [18] result and is also contained in Bluman [7]. In other
words, all Fokker–Planck equations with a five-dimensional Lie group of symmetries form an
equivalence class of which the heat equation is the canonical member.

P S Laplace discovered the two semi-invariants h = at + ab− c, k = bx + ab− c, known
as Laplace invariants, in 1773 for the general linear hyperbolic second-order equation

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0

with two independent variables t, x in his fundamental memoir [17] dedicated to the integration
theory of linear partial differential equations. These two quantities h, k remain unchanged
under the linear transformation of the dependent variable ū = σ(t, x)u. They were utilized for
the group classification of the above differential equations [21] and to construct the Riemann
function for the Cauchy initial value problem by the Lie group-theoretical method (see [13]).

Recently, it has come to our knowledge that Ibragimov [15] showed by the infinitesimal
method that equation (1) has the second-order semi-invariants

a, at, ax, att , atx, axx

K = (
at − aaxx + a2

x

)
b − 1

2b
2ax + (ab − aax)bx − abt + a2bxx − 2a2cx (3)

under the transformation of dependent variables. He called the semi-invariant K, a Laplace-
type invariant. It is straightforward, having knowledge of K, to verify that K is indeed a
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semi-invariant for equation (1) under linear changes in the dependent variable by computing
K for (1) and K̄ for the transformed equation (1). Both are equal to each other.

In this paper we obtain the joint singular invariant equation of (1) under changes of both
the dependent and independent variables, by the infinitesimal method. The outline of this
paper is as follows. Section 2 focuses on obtaining the semi-invariants for the parabolic
equation (1), i.e. the quantities remain unaltered under the transformation of independent
variables only. Section 3 is devoted to deriving the joint singular invariant equation under
equivalence transformations of equation (1). It is proved that a parabolic equation (1) is
locally equivalent, via equivalence transformations of equation (1), to the classical heat
equation if and only if the joint singular invariant equation is satisfied. We verify by physical
examples that any parabolic equation (1) satisfying the joint singular invariant equation is
equivalent to the heat equation. It is also pointed out that the Laplace-type invariant K is
not enough to reduce a parabolic equation to the heat equation. Concluding remarks are
made in section 5. The appendix contains details of the calculations of the results given
in section 3.

2. Semi-invariants of the parabolic equations

In this section, we derive the semi-invariants for equation (1) under transformation of
independent variables. We begin the section by stating some preliminaries.

Let us recall that an equivalence transformation of equation (1) is an invertible
transformation t̄ = φ(t, x, u), x̄ = ϕ(t, x, u), ū = ψ(t, x, u) which preserves the order
of the equation as well as the linearity and homogeneity. However, in general, the transformed
equation has new coefficients ā, b̄, c̄.

It is also known that the set of all equivalence transformations of the equation (1) is an
infinite group consisting of the linear transformations of the dependent variable

ū = σ(t, x)u σ(t, x) �= 0 (4)

and invertible changes of the independent variables of the form

t̄ = φ(t) x̄ = ψ(t, x) φ̇ �= 0 ψx �= 0 (5)

where an overdot denotes differentiation with respect to t, φ(t), ψ(t, x) and σ (t, x) are arbitrary
functions and ū is a new dependent variable. Two equations of the form (1) are said to be
(locally) equivalent if they can be related by an appropriate combination of the equivalence
transformations (4), (5).

Let us consider the semi-invariants of equation (1) under transformation of the independent
variables. These are combinations of the coefficients a, b, c and their derivatives which remain
unaltered under the transformations of (5) alone. Let us define the generator of (1) by

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζxx

∂

∂uxx
+ µ

∂

∂a
+ ν

∂

∂b
+ ω

∂

∂c

where the functions µ = µ(t, x, a, b, c), ν = (t, x, a, b, c) and ω = (t, x, a, b, c).
The symmetry operators are defined from an invariance condition

X(ut − a(t, x)uxx − b(t, x)ux − c(t, x)u)|(1) = 0

where the notation |(1) means evaluated on equation (1).
It gives us the determining equation

ζt = aζxx + bζx + µuxx + νux + ωu (6)
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on equation (1). We find from the formulae given, for example, in [14, p 217] that

ζt = −[ut(ξ1
t + utξ1

u

)
+ ux

(
ξ2
t + utξ2

u

)]
ζx = −[ut(ξ1

x + uxξ
1
u

)
+ ux

(
ξ2
x + uxξ

2
u

)]
(7)

ζxx = −[2uxxξ2
x + uxξ2

xx + 2u2
xξ

2
xu + 3uxuxxξ2

u + u3
xξ

2
uu + 2utxξ1

x + utξ1
xx

+ 2utuxξ
1
xu + (utuxx + 2uxutx)ξ

1
u + utu

2
xξ

1
uu

]
.

Here we consider the transformations of independent variables (not dependent variables) and
the coefficients a, b and c of (1) induced by the independent variables.

Substituting equations (7) into equation (6) and replacing the term auxx by ut − bux − cu

(from (1)) and separating the coefficients of utx, utux, ut , ux and the remaining terms, we
obtain the following equations:

ξ1 = ξ1(t) = p(t) ξ2 = ξ2(t, x) = q(t, x)
(8)

µ = 2aqx − apt ν = aqxx + bqx − bpt − qt ω = −cpt
where p(t) and q(t, x) are arbitrary given functions.

From equation (8), the infinitesimal transformations on t and x are

t̄ = t + εp(t) x̄ = x + εq(t, x)

where ε is a small parameter. Writing dt̄
dt = 1 + εṗ(t) = φ̇(t), one arrives at the transformation

t̄ = φ(t)

for t. In a similar manner, one can also obtain the transformation x̄ = ψ(t, x) for x.
Equations (8) provide the generator for the infinitesimal changes in a, b and c:

X = (2aqx − apt)
∂

∂a
+ (aqxx + bqx − bpt − qt)

∂

∂b
+ (−cpt) ∂

∂c
. (9)

The infinitesimal test XJ = 0 for the invariants J (a, b, c) is of the form

(2aqx − apt )
∂J

∂a
+ (aqxx + bqx − bpt − qt)

∂J

∂b
+ (−cpt )∂J

∂c
= 0.

Since p and q are arbitrary functions, there are in general no relations between their derivatives;
the latter equation breaks up into the following three equations obtained by cancelling
separately the terms with qxx, qx, pt

∂J

∂b
= 0

∂J

∂a
= 0

∂J

∂c
= 0.

Thus, there are in general no invariants J (a, b, c) other than J = const. However, the restricted
choice q = q(t) results in a nonconstant J = H

(
c
a

)
for an arbitrary function H. In a similar

manner, one can obtain three other cases that result in nonconstant J.
Therefore, in general, one should look for, as the next step, the first-order differential

semi-invariants, i.e. the semi-invariants of the form J = J (a, at , ax; b, bt, bx; c, ct, cx) via
the once-extended generator (9)

X = (2aqx − apt)
∂

∂a
+ (aqxx + bqx − bpt − qt)

∂

∂b
+ (−cpt) ∂

∂c

+ (2atqx − 2atpt + 2aqtx − aptt − axqt )
∂

∂at
+ (axqx − axpt + 2aqxx)

∂

∂ax

+ (atqxx + aqtxx + btqx + bqtx − qtt − 2btpt − bptt − bxqt )
∂

∂bt

+ (axqxx + aqxxx + bqxx − qtx − bxpt )
∂

∂bx

+ (−cptt − 2ctpt − cxqt )
∂

∂ct
+ (−cxpt − cxqx)

∂

∂cx
.



Singular invariant equation for the (1 + 1) Fokker–Planck equation 11037

The equation XJ(a, at , ax; b, bt, bx; c, ct , cx) = 0, upon equating to zero first the terms with
qtxx, qxxx, qtx, ptt and then those with qxx, qt yields

∂J

∂bt
= 0

∂J

∂bx
= 0

∂J

∂at
= 0

∂J

∂ct
= 0

and
∂J

∂ax
= 0

∂J

∂b
= 0

respectively. Hence, J = J (a; c, cx). Now the terms with qx, pt provide the following system
of two equations:

2a
∂J

∂a
− cx

∂J

∂cx
= 0 a

∂J

∂a
+ c

∂J

∂c
+ cx

∂J

∂cx
= 0.

One can readily solve these two equations of the system to obtain J = J (H1), whereH1 = ac2
x

c3 ,
provided that c �= 0.

The first-order differential semi-invariant has the coefficients a, c and cx, the derivative of
c with respect to x, but does not contain the coefficient b and its derivatives. Therefore, the
first-order differential invariant H1 alone is not sufficient to show that two parabolic equations
of the form (1) are equivalent under the linear transformations (5). So, we have to find the
second-order differential semi-invariants.

Let us consider the second-order differential semi-invariant of the form

J (a, at, ax, att , atx, axx; b, bt, bx, btt , btx, bxx; c, ct , cx, ctt , ctx, cxx)
for the twice-extended generator (9). Following in the same manner as above, one first arrives
at the equations

∂J

∂ctt
= 0

∂J

∂btt
= 0

∂J

∂btx
= 0

∂J

∂bxx
= 0

(10)
∂J

∂att
= 0

∂J

∂atx
= 0

∂J

∂bt
= 0.

It follows from the equations (10) that J = J (a, at, ax, axx; b, bx; c, ct , cx, ctx, cxx). Now the
equationXJ = 0 is reduced to the following system of seven equations:

a
∂J

∂bx
+ 2a

∂J

∂axx
− cx

∂J

cxx
= 0 2a

∂J

∂at
− ∂J

∂bx
− cx

∂J

∂ctx
= 0

a
∂J

∂at
+ c

∂J

∂ct
+ cx

∂J

∂ctx
= 0 a

∂J

∂b
+ 2a

∂J

∂ax
+ (b + ax)

∂J

∂bx
+ 3ax

∂J

∂axx
= 0

∂J

∂b
+ ax

∂J

∂at
+ cx

∂J

∂ct
+ cxx

∂J

∂ctx
= 0

(11)
2a
∂J

∂a
+ b

∂J

∂b
+ 2at

∂J

∂at
+ ax

∂J

∂ax
− cx

∂J

∂cx
− ctx

∂J

∂ctx
− 2cxx

∂J

∂cxx
= 0

a
∂J

∂a
+ b

∂J

∂b
+ c

∂J

∂c
+ 2at

∂J

∂at
+ ax

∂J

∂ax
+ bx

∂J

∂bx

+ 2ct
∂J

∂ct
+ cx

∂J

∂cx
+ axx

∂J

∂axx
+ 2ctx

∂J

∂ctx
+ cxx

∂J

∂cxx
= 0.

If we use the theory of systems of homogeneous linear partial differential equations of the first
order, one solves the system (11) to derive

J = J (H1,H2)
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where H1 is the same as we have found before, the first-order differential semi-invariant, and
H2 is the second-order differential semi-invariant given by

H2 = 2

c2
(ct + caxx − 2cbx − bcx) +

axcx

c2
− 2

at

ac
+ 2

bax

ac
− a2

x

ac
(12)

provided that a, c �= 0.
One can note that H2 does not contain the terms ctx, cxx , even though J is obviously a

function of these two and the others, as in the course of solving the system of seven equations
we had to separate the equation.

The necessary condition for local equivalence of two parabolic equations (1) for
c �= 0 via transformations (5) of independent variables is that the semi-invariants H1 and
H2 for the two equations be the same. The sufficient conditions are deduced by constructing
transformations of the form (5).

Let us present some examples to illustrate the use of the above differential semi-invariants
under the transformations (5).

Example 2.1. Consider the equation ut = xuxx + 1
2ux + u, with a = x, b = 1

2 , c = 1, which
has H1 = H2 = 0. This equation is equivalent to the equation ut = uxx + u (this equation also
has H1 = H2 = 0) via the linear transformation t̄ = t, x̄ = 2

√
x, ū = u.

Example 2.2. Let us investigate the equation ut = tuxx + t2ux + tu, with a = t, b = t2,

c = t , which has differential semi-invariants H1 = H2 = 0. The above equation can be reduced
to the equation ut = uxx + u by means of the linear transformation t̄ = t2

2 , x̄ = t3

3 + x, ū = u.

3. Singular invariant equation for parabolic equations

In this section, our objective is to find the joint differential invariant(s) for equation (1) under a
change of the equivalence transformation. We know from [15] that a, at, ax, att , atx, axx and
K are the non-zero differential semi-invariants under the linear transformation of dependent
variable (4). From equation (8) of section 2, we look for an operator of the form

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ µ

∂

∂a
+ ν

∂

∂b
+ µt

∂

∂at
+ µx

∂

∂ax
+ µtt

∂

∂att
+ µtx

∂

∂atx
+ µxx

∂

∂axx

+ νt
∂

∂bt
+ νx

∂

∂bx
+ νxx

∂

∂bxx
+ ωx

∂

∂cx
.

Then it follows that

Xa = µ Xat = µt Xax = µx
(13)

Xatt = µtt Xatx = µtx Xaxx = µxx XK =  

where

 = (−3K)pt +
(
aaxx − at − a2

x

)
qt + (3K)qx + aqtt + (aax)qtx

+ (−2a2)qtxx + (a2ax)qxxx + a3qxxxx (14)

and p, q are defined as in section 2. Again we construct a generator from equations (13) and
(14) in the space of the semi-invariants a, at, ax, att , atx, axx and K:

X = X(a)
∂

∂a
+ X(at)

∂

∂at
+X(ax)

∂

∂ax
+X(att )

∂

∂att
+ X(atx)

∂

∂atx

+X(axx)
∂

∂axx
+X(K)

∂

∂K
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i.e.

X = µ
∂

∂a
+ µt

∂

∂at
+ µx

∂

∂ax
+ µtt

∂

∂att
+ µtx

∂

∂atx
+ µxx

∂

∂axx
+  

∂

∂K
(15)

where µt, µx, µtt , µtx and µxx are given in the appendix which also includes the derivation of
the equations to obtain the joint differential invariants of equation (1).

Lemma 3.1. There are no first-, second-, third- and fourth-order joint differential invariants
for equation (1).

Proof. See the appendix. �
If one solves the system of equations (A.3) of the appendix, using the theory of systems of
homogeneous linear partial differential equations of the first order, one will obtain the singular
invariant equation instead of a fifth-order differential invariant, namely

λ ≡ 4a(2aKxx − 5axKx)− 12K
(
aaxx − 2a2

x

)
+ ax

(
4aatt − 9a4

x

)
− 12atax

(
at + 2a2

x

)
+ 4a

(
3at + 6a2

x − 5aaxx
)
atx

+ 2aax
(
16ataxx − 12aa2

xx + 15a2
xaxx

)− 4a2attx − 12a2axatxx

− 4a2axxx
(
2at − 4aaxx + 3a2

x

)
+ 8a3atxxx − 4a4axxxxx = 0. (16)

The heat equation ut = uxx is of the form (1) with coefficients a = 1, b = 0, c = 0. It has the
Laplace-type semi-invariant (3), K = 0, and moreover satisfies the singular invariant equation
(16), i.e λ = 0.

It is straightforward to verify that the other canonical forms in Lie’s classification

ut = uxx +
A

x2
u ut = uxx + Z(x)u ut = uxx + Z(t, x)u

where A �= 0 is a constant and Z is an arbitrary function, have λ �= 0 for Zx �= 0.
We have the following result.

Theorem 3.1. A necessary condition for the parabolic equation of the form (1) to be reducible
to the heat equation is that the singular invariant equation (16), i.e. λ = 0, with respect to the
group of general equivalence transformations (4) and (5), must be satisfied.

At this stage the question arises whether λ = 0 is sufficient for a given equation of the form
(1) to be transformable into the heat equation.

We now verify that the equations (4) and (5) are equivalence transformations of equation
(1) and show the existence of such transformations once λ = 0 for reduction to the heat
equation. One can proceed as follows. By the rules of derivatives, one obtains

Dt = φ̇(t)D̄t̄ + ψtD̄x̄ Dx = ψxD̄x̄ . (17)

Application of (17) to (4) yields

ūt̄ = (σut + uσt )

φ̇
− ψt(σux + uσx)

φ̇ψx
ūx̄ = 1

ψx
(σux + uσx)

(18)
ūx̄x̄ = 1

ψ2
x

(σuxx + 2σxux + uσxx)− ψxx

ψ3
x

(σux + uσx).

Substituting the above equations (18) into the equation ūt̄ = āūx̄x̄ + b̄ūx̄ + c̄ū, one will arrive
at the following equations

ā(t̄, x̄) = aψ2
x

φ̇
b̄(t̄ , x̄) = ψx

φ̇

(
b − 2a

σx

σ
+ a

ψxx

ψx
− ψt

ψx

)
(19)

c̄(t̄ , x̄) = 1

φ̇

(
c − a

σxx

σ
− b

σx

σ
+ 2a

σ 2
x

σ 2
+
σt

σ

)
.
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Thus the transformations (4), (5) conserve the linearity and homogeneity.
Suppose that equation (1) has the symmetry generator

X = τ (t)
∂

∂t
+ ξ(t, x)

∂

∂x
+ η(t, x)u

∂

∂u
τ �= 0.

This generator is transformable via canonical coordinates into the translation symmetry
generatorX = ∂

∂ t̄
. The transformations are of the form

t̄ = t̄ (t) x̄ = x̄(t, x) ū = ω(t, x)u.

It follows that

t̄ =
∫ t

0

ds

τ (s)
.

Also we must have

τ
∂x̄

∂t
+ ξ

∂x̄

∂x
= 0 τ

∂ω

∂t
+ ξ

∂ω

∂x
= −ηω.

Then, equation (1) will reduce to

ūt̄ = ā(x̄)ūx̄x̄ + b̄(x̄)ūx̄ + c̄(x̄)ū

which admits the symmetry

X = ∂

∂t̄
.

We now consider the equation without the bars, namely

ut = a(x)uxx + b(x)ux + c(x)u

which has X = ∂
∂t

as the symmetry generator. We find the transformation that reduces this
equation to the heat equation

ūt̄ = ūx̄x̄

under (4) and (5): t̄ = φ(t), x̄ = ψ(t, x), ū = σ(t, x)u. From the first equation of (19), we
have

ψ = ±φ̇1/2
∫

dx√
a(x)

+ β(t)

where β(t) is, for the moment, an arbitrary function, provided φ̇ and a have the same sign.
Substituting the above equation into the second equation of (19), we obtain

σ = ν(t)|a(x)|−1/4 exp

[
1

2

∫
b(x)

a(x)
dx − 1

8

φ̈

φ̇

(∫
dx√
a(x)

)2

∓ 1

2

β̇

φ̇1/2

∫
dx√
a(x)

]
(20)

where ν(t) is as yet an arbitrary function.
Then inserting equation (20) into the third equation of (19), we arrive at the following

equations:

−8C1 = φ̈2

φ̇2
− 2

(
φ̈

φ̇

)
t

−4C2 = φ̈

φ̇3/2
β̇ − 2

(
β̇√
φ̇

)
t

(21)

−C3 = φ̈

4φ̇
+
β̇2

4φ̇
+
ν̇

ν
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where C1, C2 and C3 are constants with C1 given by

C1 = a1/2(a1/2Ax

)
x

where

A(x) = c − bx

2
+
bax

2a
+
axx

4
− 3

16

a2
x

a
− b2

4a
.

Also, C1, C2 and C3 are constrained by the relation

A− C3 − 1

2
C1

(∫
dx√
a

)2

− C2

(∫
dx√
a

)
= 0.

Equations (21) mean that the transformations (4) and (5) which reduce a given parabolic
equation (1) with λ = 0 into the heat equation exist as one can obtain the solutions φ, β and
ν after finding the function A and the constant C1. The constants C2 and C3 are also not
arbitrary and should be appropriately chosen utilizing the above constraining relation. This
completes the proof for the sufficient condition for the existence of equivalence transformations
(4) and (5).

It is opportune to remark that (21) provide the explicit transformations as given in
(4) and (5) (once λ = 0 and A, C1 are known as well as C2 and C3 are determined) for
the reduction to the classical heat equation for time-independent parabolic equations (1). If
λ = 0 for parabolic time-dependent equations the above theorem guarantees the existence of
a point transformation that will reduce it to the heat equation. The proof of the theorem relies
on knowledge of a symmetry which is reduced to time translations via canonical coordinates
which in turn transform the parabolic equation to a time-independent parabolic equation.
However, in practice, once λ= 0, one can find the transformation that will reduce the equation
to the heat equation without knowledge of a symmetry by solving equations (19). That is, one
will end up with

ψ(t, x) = ±φ̇1/2
∫
a(t, x)−1/2 dx + β(t)

σ (t, x) = ν(t)|a(t, x)|−1/4 exp

{∫
b(t, x)

2a(t, x)
dx − 1

8

φ̈

φ̇

(∫
dx

a(t, x)1/2

)2

(22)

∓ 1

2

β̇

φ̇
1/2

∫
dx

a(t, x)1/2

}

where σ satisfies

c(t, x)− a
(σx
σ

)
x

+ a
(σx
σ

)2
− b

(σx
σ

)
+
(σt
σ

)
= 0 (23)

which needs to be solved for β, φ and ν.
In view of the above, we can state the following general results.

Theorem 3.2. A necessary and sufficient condition for a one-dimensional parabolic equation
(1) (which includes the one-dimensional FP equation) to be locally equivalent to the
classical one-dimensional heat equation is that the singular invariant equation (16) be
satisfied, i.e. λ = 0.

Corollary 3.1. A one-dimensional parabolic equation (1) (which includes the one-
dimensional FP equation) admits a nontrivial five-dimensional symmetry Lie algebra of point
symmetries (in addition to the trivial homogeneity symmetry u ∂

∂u
and infinite superposition

symmetries α ∂
∂u

with α solving equation (1)) if and only if (16) holds, i.e. λ = 0.
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4. Applications

It is worthwhile to provide the following examples to show the worthiness of the singular
invariant equation (16). All parabolic equations stated in the examples below have five
nontrivial Lie point symmetries apart from the homogeneity and superposition trivial
symmetries such as λ = 0. Most of the transformations below are constructable from (21). In
example 4.8, the transformation is obtained via (22) and (23). It is worthwhile remarking that
there is more than one transformation which can reduce a given parabolic equation (1) to the
heat equation.

Example 4.1. Consider the equation ∂u
∂t

= ∂
∂x
(gu) + D

2 uxx (see [10]) describing the diffusional
process in a field of force of weight, which is of the form (1)

ut = D

2
uxx + gux (24)

with coefficients a = D
2 , b = g, c = 0 and D, g are constants. This equation has K = 0

and satisfies the singular invariant equation (16). Therefore, it can be transformed into the
heat equation by Lie’s equivalence transformation. Using equations (21), the Lie equivalence
transformation through which the above-stated parabolic equation (24) is reduced to the heat
equation is

t̄ = −1

t
x̄ =

√
2

D

x

t
− 1

t

ū = u
√
t

(
D

2

)−1/4

exp

{
g

D
x +

g2

2D
t +

x2

2Dt
+

1

4t
−
√

1

2D

x

t

}
.

There is another transformation (see [24, 26]) through which equation (24) is reducible to the
heat equation

t̄ = D

2
t x̄ = x ū = u exp

(
gx +

g2

2
t

)
.

Example 4.2. Consider the equation ∂u
∂t

= ∂2

∂x2 [(1 − x2)2u] (see [19]) describing models in
population genetics, which is of the form (1)

ut = (1 − x2)2uxx − 8x(1 − x2)ux − 4(1 − 3x2)u (25)

with coefficients a = (1 − x2)2, b = −8x(1 − x2), c = −4(1 − 3x2). Equation (25) has
K = 0 and satisfies the singular invariant equation (16). Hence, equation (25) is reducible to
the heat equation by means of the equivalence transformation

t̄ = −1

t
x̄ = 1

2t
ln

(
1 + x

1 − x

)
− 1

t

ū = u
√
t(1 − x2)

3
2

(
1 + x

1 − x

)− 1
4t

exp

{
t +

1

4t
+

1

16t
ln2

(
1 + x

1 − x

)}
.

We can also get the following transformation (see [24, 26])

t̄ = t x̄ = 1

2
ln

(
1 + x

1 − x

)
ū = u(1 − x2)3/2et .
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Example 4.3. Let us consider the equation ∂u
∂t

= α
2
∂2

∂x2 [x2(1 − x)2] (see [19]) also describing
models in population genetics, which is in the form (1)

ut = α

2
(x − x2)2uxx + 2α(x − x2)(1 − 2x)ux + α(1 − 6x + 6x2)u (26)

with coefficients a = α
2 (x−x2)2, b = 2α(x−x2)(1−2x), c = α(1−6x+6x2). Equation (26)

has K = 0 and satisfies equation (16). Thus, equation (26) can be transformed into the heat
equation by means of Lie’s equivalence transformation

t̄ = −1

t
x̄ =

√
2

α

1

t
ln

x

1 − x
− 1

t

ū = u
(α

2

)−1/4 √
t(x − x2)

3
2

(
x

1 − x

)− 1√
2αt

exp

{
αt

8
+

1

4t
+

1

2αt
ln2 x

1 − x

}
.

It is also possible to obtain the following equivalence transformation (see [24, 26])

t̄ = α

2
t x̄ = ln

x

1 − x
ū = u(x − x2)

3
2 exp

{α
8
t
}
.

Example 4.4. Let us investigate another equation ∂u
∂t

= α
2
∂2

∂x2 [(x− c)2u] +β ∂
∂x

[(x− c)u] (see
[19]) which also describes models in population genetics. This equation can be expressed in
the form of (1), i.e.

ut = α

2
(x − c)2uxx + (2α + β)(x − c)ux + (α + β)u (27)

with coefficients a = α
2 (x − c)2, b = (2α + β)(x − c), c = α + β and α, β are constants. One

can readily verify that equation (27) has K = 0 and satisfies the singular invariant equation (16).
Therefore, equation (27) is reduced to the heat equation by means of the transformation

t̄ = −1

t
x̄ =

√
2

α

ln(x − c)

t
− 1

t

ū =
(α

2

)−1/4
u
√
t(x − c)

(
3
2 +

α
β

+
ln(x−c)

2αt −
√

1
2α

1
t

)
exp

{
(α + 2β)2

8α
t +

1

4t

}
.

One can also derive the following transformation (see [24, 26])

t̄ = t x̄ =
√

2/α ln(x − c) ū = u(x − c)(
3
2 + β

α ) exp

{(
β2

2α
+
β

2
+
α

8

)
t

}
.

Example 4.5. Let us consider the Black–Scholes (see [3]) equation which is a primary
differential equation used to determine the appropriate price or theoretical value of an option
(an optimal portfolio problem) in the mathematics of finance

ut + 1
2A

2x2uxx + Bxux − Cu = 0

where A,B and C are constants. We can readily verify that the invariant K = 0 and the
Black–Scholes equation satisfies equation (16). Therefore, the Black–Scholes equation can
be transformed into the heat equation by the equivalence transformation

t̄ = 1

t
x̄ =

√
2

At
ln x − 1

t

ū =
(
A2

2

)−1/4

u
√
t x

(
D
A2 − 1

2A2 t
ln x+ 1√

2At

)
exp

{
− 1

4t
− Ct − D2

2A2
t

}

whereA �= 0,D = B − A2

2 (see also [11]). The Black–Scholes equation is also transformable
into the heat equation by another equivalence transformation (see [11, p 396]) which can be
constructed in the same way.
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Example 4.6. Consider the equation ∂u
∂t

= ∂
∂x
(kxu) + D

2
∂2u
∂x2 (see [10]) which has the form

of (1)

ut = D

2
uxx + kxux + ku (28)

with coefficients a = D
2 , b = kx, c = k and D, k are constants. This equation describes

the Ornstein–Uhlenbeck process. We have K = D
2 k

2x and equation (16) is satisfied.
Equation (28) has the following nontrivial Lie point symmetries

X1 = e2kt ∂

∂t
+ kxe2kt ∂

∂x
− 2

D
k2x2ue2kt ∂

∂u
X2 = e−2kt ∂

∂t
− kxe−2kt ∂

∂x
+ kue−2kt ∂

∂u

X3 = ekt
∂

∂x
− 2

D
kxuekt

∂

∂u
X4 = ∂

∂t
X5 = e−kt ∂

∂x
.

Hence, the above equation (28) is reducible to the heat equation by means of the transformations
(4) and (5)

t̄ = − 1

2k

e−kt

ekt − e−kt x̄ = 1

2k

√
8
D
kx − e−kt

ekt − e−kt

ū =
(
D

2

)−1/4

u(ekt − e−kt )1/2 exp

{
1

ekt − e−kt

(
k

D
x2ekt − x√

2D
+

1

8k
e−kt

)
− kt

2

}
.

The transformations also take the form (see [24, 26])

t̄ = D

4k
exp(2kt) x̄ = x exp(kt) ū = u exp(−kt).

Example 4.7. The equation of the Rayleigh-type process, ∂u
∂t

= ∂
∂x

[(
γ x − µ

x

)
u
]

+ µ

2
∂2u
∂x2 (see

[24]), is of the form (1)

ut = µ

2
uxx +

(
γ x − µ

x

)
ux +

(
γ +

µ

x2

)
u (29)

with coefficients a = µ

2 , b = γ x − µ

x
, c = γ + µ

x2 , where µ, γ are constants. We have

K = µγ 2

2 x for this equation and equation (16) holds. Moreover, the nontrivial Lie point
symmetries of this equation (29) are

X1 = e2γ t ∂

∂t
+ γ xe2γ t ∂

∂x
− 2

(
γ 2x2

µ
+ γ

)
ue2γ t ∂

∂u

X2 = e−2γ t ∂

∂t
− γ xe−2γ t ∂

∂x
− γ ue−2γ t ∂

∂u

X3 = eγ t
∂

∂t
−
(

2
γ x

µ
+
µ

x

)
ueγ t

∂

∂u

X4 = e−γ t ∂
∂x

− µ

x
ue−γ t ∂

∂u
X5 = ∂

∂t
.

Also the above equation (29) is transformable into the heat equation by means of the
transformation (4), (5)

t̄ = − 1

2γ

e−γ t

eγ t − e−γ t x = 1

2γ

√
8
µ
γ x − e−γ t

eγ t − e−γ t

ū =
(µ

2

)−1/4 u

x
(eγ t − e−γ t )1/2 exp

{
1

eγ t − e−γ t

(
γ

D
x2eγ t − x√

2µ
+

1

8γ
e−γ t

)
− 3γ t

2

}
.
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The transformation takes the form (see [24, 26])

t̄ = µ

4γ
exp(2γ t) x̄ = x exp(γ t) ū = u

x
exp(−2γ t).

Example 4.8. The FP equation

∂u

∂t
= − ∂

∂x
[a(t)x + b(t)]u + c(t)

∂2u

∂x2
(30)

(see [27]) is of the form (1) with coefficients a = c(t), b = −(a(t)x + b(t)), c = −a(t).
Equation (30) has K = (a2c + cȧ− aċ)x + abc− bċ + cḃ and the coefficients of this equation
satisfy the singular invariant equation (16). Therefore, equation (30) is reducible to the heat
equation by means of the equivalence transformation [24]

t̄ = γ (t) x̄ = x exp{α(t)} + β(t) ū = u exp{−α(t)}
where

α(t) = −
∫ t

0
a(s) ds β(t) = −

∫ t

0
b(s) exp{α(s)} ds

γ (t) =
∫ t

0
c(s) exp{2α(s)} ds.

This transformation can be obtained from (22) and (23).

5. Concluding remarks

We have obtained two semi-invariants under the equivalence transformation (5) for the (1 + 1)
parabolic equation by the infinitesimal method. We have also derived the joint invariant
equation for the (1 + 1) parabolic equation and this equation is satisfied for all parabolic
equations which have nontrivial five Lie point symmetries in addition to the trivial homogeneity
symmetry u ∂

∂u
and infinite superposition symmetries α ∂

∂u
with α solving equation (1).

Moreover, we have proved sufficient conditions for reduction to the one-dimensional heat
equation. That is, these equations can be reduced to the heat equation via appropriate
Lie equivalence transformations (4), (5). Also, it has been verified by physical examples
4.6–4.8 that equations having five nontrivial Lie point symmetries cannot be reduced to the
heat equation by merely using the semi-invariant K but also the singular invariant equation
λ= 0 given in (16). Finally, several physical examples were given to verify the general results
obtained.

If the singular invariant equation (16) is not satisfied, then the parabolic equation has
three, one or zero nontrivial Lie point symmetries.
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Appendix

Here, we derive the equations for the derivation of the joint differential invariants of (1) and
briefly state the method to obtain the singular invariant equation (16). We have (see section 3)
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µt = (−2at)pt + (−a)ptt + (−ax)qt + (2at)qx + (2a)qtx
µx = (−ax)pt + (ax)qx + (2a)qxx
µtt = (−3att )pt + (−3at)ptt + (−a)pttt + (−2atx)qt + (2att )qx

+ (−ax)qtt + (4at)qtx + (2a)qttx
µtx = (−2atx)pt + (−ax)ptt + (−axx)qt + (atx)qx + (ax)qtx + (2at)qxx + (2a)qtxx
µxx = (−axx)pt + (3ax)qxx + (2a)qxxx
which are calculated by using the total differentiations

Dt = ∂

∂t
+ at

∂

∂a
+ att

∂

∂at
+ atx

∂

∂ax
+ · · · + bt

∂

∂b
+ btt

∂

∂bt
+ btx

∂

∂bx
+ · · ·

+ ct
∂

∂c
+ ctt

∂

∂ct
+ ctx

∂

∂cx
+ · · · + Kt

∂

∂K
+Ktt

∂

∂Kt

+Ktx

∂

∂Kx

+ · · ·
(A.1)

Dx = ∂

∂x
+ ax

∂

∂a
+ axx

∂

∂ax
+ atx

∂

∂at
+ · · · + bx

∂

∂b
+ bxx

∂

∂bx
+ btx

∂

∂bt
+ · · ·

+ cx
∂

∂c
+ cxx

∂

∂cx
+ ctx

∂

∂ct
+ · · · +Kx

∂

∂K
+Ktx

∂

∂Kt

+Kxx

∂

∂Kx

+ · · ·
and µ, i.e. for example

µt = Dt(µ)− atDt (ξ
1)− axDt (ξ

2)

= Dt(2aqx − apt)− atDt (p)− axDt (q).

The other terms are calculated in a similar manner.
The infinitesimal test X J = 0 for the invariants J (a, at, ax, att , atx, axx;K) is written as

[2aqx − apt ]
∂J

∂a
+ [(−2at)pt + (−a)ptt + (−ax)qt + (2at)qx + (2a)qtx]

∂J

∂at

+ [(−ax)pt + (ax)qx + (2a)qxx]
∂J

∂ax
+ [(−3att)pt + (−3at)ptt + (−a)pttt

+ (−2atx)qt + (2att )qx + (−ax)qtt + (4at)qtx + (2a)qttx]
∂J

∂att
+ [(−2atx)pt + (−ax)ptt + (−axx)qt + (atx)qx + (ax)qtx + (2at)qxx

+ (2a)qtxx]
∂J

∂atx
+ [(−axx)pt + (3ax)qxx + (2a)qxxx]

∂J

∂axx

+
[
(−3K)pt +

(
aaxx − at − a2

x

)
qt + (3K)qx + aqtt + (aax)qtx + (−2a2)qtxx

+
(
a2ax

)
qxxx + a3qxxxx

] ∂J
∂K

= 0.

Equating to zero the coefficients of qxxxx, qttx , qtxx, qxxx , qtx, qxx and qx yields
∂J

∂K
= 0

∂J

∂att
= 0

∂J

∂atx
= 0

∂J

∂axx
= 0

∂J

∂at
= 0

∂J

∂ax
= 0

∂J

∂a
= 0.

Hence, there are no invariants J (a, at, ax, att , atx, axx;K) other than J = const.
Let us now consider the third-order differential invariants, i.e. those of the form
J (a, at, ax, att , atx, axx, attt , attx , atxx , axxx;K,Kt ,Kx) for the once-extendedgenerator (15)

X = µ
∂

∂a
+ µt

∂

∂at
+ µx

∂

∂ax
+ µtt

∂

∂att
+ µtx

∂

∂atx
+ µxx

∂

∂axx
+  

∂

∂K

+µttt
∂

∂attt
+ µttx

∂

∂attx
+ µtxx

∂

∂atxx
+ µxxx

∂

∂axxx
+  t

∂

∂Kt

+  x
∂

∂Kx

.
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One can easily calculate µttt , . . . , µxxx as we have found earlier for µt. We have

µttt = (−4attt )pt + (−6att )ptt + (−4at)pttt + (−a)ptttt + (−3attx)qt
+ (2attt )qx + (−3atx)qtt + (6att )qtx + (−ax)qttt + (6at)qttx + (2a)qtttx

µttx = (−3attx)pt + (−3atx)ptt + (−ax)pttt + (−2attx)qt + (attx)qx
+ (−axx)qtt + (2atx)qtx + (2att )qxx + (ax)qttx + (4at)qtxx + (2a)qttxx

µtxx = (−2atxx)pt + (−axx)ptt + (−axxx)qt + (3atx)qxx + (3ax)qtxx + (2at)qxxx + (2a)qtxxx
µxxx = (−axxx)pt + (−axxx)qx + (3axx)qxx + (5ax)qxxx + (2a)qxxxx
 t = (−4Kt)pt + (−3K)ptt + (ataxx + aatxx − att − 2axatx −Kx)qt

+ (3Kt)qx +
(
aaxx − a2

x

)
qtt + (3K + atax + aatx)qtx + (a)qttt

+ (aax)qttx + (−4aat)qtxx +
(
2aatax + a2atx

)
qxxx + (−2a2)qttxx

+
(
a2ax

)
qtxxx +

(
3a2at

)
qxxxx + (a3)qtxxxx

 x = (−3Kx)pt + (aaxxx − atx − axaxx)qt + (2Kx)qx + (ax)qtt
+ (2aaxx − at )qtx + (3K)qxx + (a)qttx + (−3aax)qtxx +

(
a2axx + 2aa2

x

)
qxxx

+ (−2a2)qtxxx +
(
4a2ax

)
qxxxx + (a3)qxxxxx .

The equation X J = 0, upon first equating to zero the terms with qtxxxx , qxxxxx , qttxx , qtxxx , ptttt
and then those with pttt , qxxxx , qtxx, qxxx , qtt , qtx, qxx, qx , yields

∂J/∂Kt = 0 ∂J/∂Kx = 0 ∂J/∂attx = 0 ∂J/∂atxx = 0 ∂J/∂attt = 0

and

∂J/∂att = 0 ∂J/∂axxx = 0 ∂J/∂atx = 0 ∂J/∂axx = 0

∂J/∂K = 0 ∂J/∂at = 0 ∂J/∂ax = 0 ∂J/∂a = 0.

Thus, there is no third-order joint differential invariant. So, one must seek, as the next step,
the fourth-order joint differential invariants of the form

J (a, at, ax, att , atx, axx, attt , attx , atxx , axxx, atttt , atttx , attxx , atxxx , axxxx ;
K,Kt ,Kx,Ktt ,Ktx,Kxx)

for the twice-extended generator (15). We have the following equations by proceeding in the
same way as we have done before:

µtttt = (−5atttt )pt + (−10attt )ptt + (−10att)pttt + (−5at)ptttt + (−a)pttttt
+ (−4atttx)qt + (2atttt )qx + (−6attx)qtt + (8attt )qtx + (−4atx)qttt
+ (12att)qttx + (−ax)qtttt + (8at)qtttx + (2a)qttttx

µtttx = (−4atttx)pt + (−6attx)ptt + (−4atx)pttt + (−ax)ptttt + (−3attxx)qt
+ (atttx)qx + (−3atxx)qtt + (3attx)qtx + (2attt )qxx + (−axx)qttt
+ (3atx)qttx + (6att )qtxx + (ax)qtttx + (6at)qttxx + (2a)qtttxx

µttxx = (−3attxx)pt + (−3atxx)ptt + (−axx)pttt + (−2atxxx)qt + (−axxx)qtt
+ (3attx)qxx + (6atx)qtxx + (2att )qxxx + (3ax)qttxx + (4at)qtxxx + (2a)qttxxx

µtxxx = (−2atxxx)pt + (−axxx)ptt + (−axxxx)qt + (−atxxx)qx + (−axxx)qtx
+ (3atxx)qxx + (3axx)qtxx + (5atx)qxxx + (5ax)qtxxx + (2at)qxxxx + (2a)qtxxxx

µxxxx = (−axxxx)pt + (−2axxxx)qx + (2axxx)qxx + (8axx)qxxx + (7ax)qxxxx + (2a)qxxxxx
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 tt = (−5Ktt)pt + (−7Kt)ptt + (−3K)pttt
+
(
attaxx + 2atatxx + aattxx − attt − 2a2

tx − 2axattx − 2Ktx

)
qt

+ (3Ktt)qx + (2ataxx + 2aatxx − att − 4axatx −Kx)qtt

+ (6Kt + att ax + 2atatx + aattx)qtx +
(
aaxx − a2

x + at
)
qttt

+ (3K + 2atax + 2aatx)qttx +
(−4a2

t − 4aatt
)
qtxx

+
(
2aaxatt + 4aatatx + 2a2

t ax + a2attx
)
qxxx + (a)qtttt + (aax)qtttx

+ (−8aat)qttxx +
(
4aatax + 2a2atx

)
qtxxx +

(
6aa2

t + 3a2att
)
qxxxx

+ (−2a2)qtttxx +
(
a2ax

)
qttxxx +

(
6a2at

)
qtxxxx + (a3)qttxxxx

 tx = (−4Ktx)pt + (−3Kx)ptt

+ (ataxxx − axxatx − axatxx + aatxxx − attx −Kxx)qt + (2Ktx)qx

+ (aaxxx − axaxx)qtt + (2Kx + 2ataxx + 2aatxx − att )qtx + (3Kt)qxx

+ (ax)qttt + (2aaxx)qttx + (3K − 3aatx − 3atax)qtxx
+
(
4aaxatx + 2aataxx + 2ata

2
x + a2atxx

)
qxxx + (a)qtttx + (−3aax)qttxx

+
(
2aa2

x + a2axx − 4aat
)
qtxxx +

(
4a2atx + 8aatax

)
qxxxx + (−2a2)qttxxx

+
(
4a2ax

)
qtxxxx +

(
3a2at

)
qxxxxx + (a3)qtxxxxx

 xx = (−3Kxx)pt +
(
aaxxxx − atxx − a2

xx

)
qt + (Kxx)qx + (axx)qtt

+ (3aaxxx − 2atx + axaxx)qtx + (5Kx)qxx + (2ax)qttx
+
(−aaxx − at − 3a2

x

)
qtxx +

(
3K + 2a3

x + 6aaxaxx + a2axxx
)
qxxx

+ (a)qttxx + (−7aax)qtxxx +
(
10aa2

x + 5a2axx
)
qxxxx + (−2a2)qtxxxx

+
(
7a2ax

)
qxxxxx + (a3)qxxxxxx .

In the same manner as above, one can find that there are no joint differential invariants of
fourth order upon the insertion of the above equations into the twice-extended generator acting
on J, X J = 0. Therefore, there is no alternative other than extending the operator (15) three
times. We shall look for the differential invariants of the form

J (a, at, ax, att , atx, axx, attt , attx , atxx , axxx, atttt , atttx , attxx , atxxx , axxxx , attttt , attttx , atttxx ,

attxxx , atxxxx , axxxxx ;K,Kt ,Kx,Ktt ,Ktx,Kxx,Kttt , Kttx ,Ktxx ,Kxxx)

for the thrice-extended generator (15). We obtain the following equations

µttttt = (−6attttt )pt + (−15atttt )ptt + (−20attt )pttt + (−15att)ptttt

+ (−6at)pttttt + (−a)ptttttt + (−5attttx)qt + (2attttt )qx + (−10atttx)qtt

+ (10atttt )qtx + (−10attx)qttt + (20attt )qttx + (−5atx)qtttt

+ (20att)qtttx + (−ax)qttttt + (10at)qttttx + (2a)qtttttx

µttttx = (−5attttx)pt + (−10atttx)ptt + (−10attx)pttt + (−5atx)ptttt

+ (−ax)pttttt + (−4atttxx)qt + (attttx )qx + (−6attxx)qtt + (4atttx)qtx
+ (2atttt )qxx + (−4atxx)qttt + (6attx)qttx + (8attt )qtxx + (−axx)qtttt
+ (4atx)qtttx + (12att )qttxx + (ax)qttttx + (8at)qtttxx + (2a)qttttxx

µtttxx = (−4atttxx)pt + (−6attxx)ptt + (−4atxx)pttt + (−axx)ptttt + (−3attxxx )qt
+ (−3atxxx)qtt + (3atttx)qxx + (−axxx)qttt + (9attx)qtxx + (2attt )qxxx
+ (9atx)qttxx + (6att )qtxxx + (3ax)qtttxx + (6at)qttxxx + (2a)qtttxxx



Singular invariant equation for the (1 + 1) Fokker–Planck equation 11049

µttxxx = (−3attxxx)pt + (−3atxxx)ptt + (−axxx)pttt + (−2atxxxx)qt
+ (−attxxx)qx + (−axxxx)qtt + (−2atxxx)qtx + (3attxx)qxx
+ (−axxx)qttx + (6atxx)qtxx + (5attx)qxxx + (3axx)qttxx + (10atx)qtxxx
+ (2att)qxxxx + (5ax)qttxxxx + (4at)qtxxxx + (2a)qttxxx

µtxxxx = (−2atxxxx)pt + (−axxxx)ptt + (−axxxxx)qt + (−2atxxxx)qx
+ (−2axxxx)qtx + (2atxxx)qxx + (2axxx)qtxx + (8atxx)qxxx
+ (8axx)qtxxx + (7atx)qxxxx + (7ax)qtxxxx + (2at)qxxxxx + (2a)qtxxxxx

µxxxxx = (−axxxxx)pt + (−3axxxxx)qx + (10axxx)qxxx + (15axx)qxxxx
+ (9ax)qxxxxx + (2a)qxxxxxx .

There is no need to calculate  ttt ,  ttx ,  txx ,  xxx as we have noted in earlier cases that J
does not depend on these variables. Proceeding in the same manner, one first arrives at the
equations

∂J

∂Kttt

= 0
∂J

∂Kttx

= 0
∂J

∂Ktxx

= 0
∂J

∂Kxxx

= 0
∂J

∂attttt
= 0

∂J

∂attttx
= 0

∂J

∂atttxx
= 0

∂J

∂attxxx
= 0

∂J

∂atxxxx
= 0

∂J

∂atttt
= 0 (A.2)

∂J

∂atttx
= 0

∂J

∂attxx
= 0

∂J

∂attt
= 0

∂J

∂Ktt

= 0
∂J

∂Ktx

= 0
∂J

∂Kt

= 0.

It follows from equations (A.2) that J (a, at , ax, att , atx, axx, attx , atxx , axxx, atxxx , axxxx ,
axxxxx ;K,Kx,Kxx). Now the equation X J = 0 reduces to the following system of 17
equations:

2
∂J

∂axxxxx
+ a2 ∂J

∂Kxx

= 0
∂J

∂atxxx
− a

∂J

∂Kxx

= 0 2
∂J

∂attx
+

∂J

∂Kxx

= 0

a
∂J

∂att
+ ax

∂J

∂attx
= 0 2a

∂J

∂att
+ ax

∂J

∂attx
+ a

∂J

∂Kx

+ 2ax
∂J

∂Kxx

= 0

2a
∂J

∂atxx
+ 5ax

∂J

∂atxxx
− 2a2 ∂J

∂Kx

− 7aax
∂J

∂Kxx

= 0

2a
∂J

∂axxxx
+ 9ax

∂J

∂axxxxx
+ a3 ∂J

∂Kx

+ 7a2ax
∂J

∂Kxx

= 0

ax
∂J

∂att
+ axx

∂J

∂attx
− a

∂J

∂K
− ax

∂J

∂Kx

− axx
∂J

∂Kxx

= 0

a
∂J

∂at
+ 3at

∂J

∂att
+ ax

∂J

∂atx
+ 3atx

∂J

∂attx
+ axx

∂J

∂atxx
+ axxx

∂J

∂atxxx
= 0

2a
∂J

∂atx
+ 4at

∂J

∂attx
+ 3ax

∂J

∂atxx
+ 3axx

∂J

∂atxxx
− 2a2 ∂J

∂K
− 3aax

∂J

∂Kx

− (
aaxx + at + 3a2

x

) ∂J

∂Kxx

= 0

2a
∂J

∂axxx
+ 2at

∂J

∂atxxx
+ 7ax

∂J

∂axxxx
+ 15axx

∂J

∂axxxxx
+ a3 ∂J

∂K
+ 4a2ax

∂J

∂Kx

+
(
5a2axx + 10aa2

x

) ∂J

∂Kxx

= 0



11050 I K Johnpillai and F M Mahomed

2a
∂J

∂at
+ 4at

∂J

∂att
+ ax

∂J

∂atx
+ 2atx

∂J

∂attx
− axxx

∂J

∂atxxx
+ aax

∂J

∂K

+ (2aaxx − at )
∂J

∂Kx

+ (3aaxxx − 2atx + axaxx)
∂J

∂Kxx

= 0

2a
∂J

∂ax
+ 2at

∂J

∂atx
+ 3ax

∂J

∂axx
+ 2att

∂J

∂attx
+ 3atx

∂J

∂atxx
+ 3axx

∂J

∂axxx

+ 3atxx
∂J

∂atxxx
+ 2axxx

∂J

∂axxxx
+ 3K

∂J

∂Kx

+ 5Kx

∂J

∂Kxx

= 0 (A.3)

2a
∂J

∂axx
+ 2at

∂J

∂atxx
+ 5ax

∂J

∂axxx
+ 5atx

∂J

∂atxxx
+ 8axx

∂J

∂axxxx
+ 10axxx

∂J

∂axxxxx

+ a2ax
∂J

∂K
+
(
2aa2

x + a2axx
) ∂J
∂Kx

+
(
3K + 2a3

x + 6aaxaxx + a2axxx
) ∂J

∂Kxx

= 0

ax
∂J

∂at
+ 2atx

∂J

∂att
+ axx

∂J

∂atx
+ 2atxx

∂J

∂attx
+ axxx

∂J

∂atxx
+ axxxx

∂J

∂atxxx

− (
aaxx − at − a2

x

) ∂J
∂K

− (aaxxx − atx − axaxx)
∂J

∂Kx

− (
aaxxxx − atxx − a2

xx

) ∂J

∂Kxx

= 0

2a
∂J

∂a
+ 2at

∂J

∂at
+ ax

∂J

∂ax
+ 2att

∂J

∂att
+ atx

∂J

∂atx
+ attx

∂J

∂attx
− axxx

∂J

∂axxx
− atxxx

∂J

∂atxxx

−2axxxx
∂J

∂axxxx
− 3axxxxx

∂J

∂axxxxx
+ 3K

∂J

∂K
+ 2Kx

∂J

∂Kx

+ Kxx

∂J

∂Kxx

= 0

a
∂J

∂a
+ 2at

∂J

∂at
+ ax

∂J

∂ax
+ 3att

∂J

∂att
+ 2atx

∂J

∂atx
+ axx

∂J

∂axx
+ 3attx

∂J

∂attx

+ 2atxx
∂J

∂atxx
+ axxx

∂J

∂axxx
+ 2atxxx

∂J

∂atxxx
+ axxxx

∂J

∂axxxx
+ axxxxx

∂J

∂axxxxx

+ 3K
∂J

∂K
+ 3Kx

∂J

∂Kx

+ 3Kxx

∂J

∂Kxx

= 0.

Writing the first equation of (A.3) in the characteristic form
daxxxxx

2
= dKxx

a2
= dJ

0
(A.4)

it follows that

J = J (A1; a, at, ax, att , atx, axx, attx , atxx , axxx, atxxx , axxxx ;K,Kx)

where A1 = 2Kxx − a2axxxxx is a solution of (A.4).
We write the second equation of (A.3) in the following way:

X = ∂

∂atxxx
− a

∂

∂Kxx

.

Then, we have

XA1 = −2a Xatxxx = 1 Xa = 0 Xat = 0, . . . XKx = 0.

Therefore, we have

− dA1

2a
= datxxx

1
= dJ

0
. (A.5)
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Thus

J = J (A2; a, at, ax, att , atx, axx, attx , atxx , axxx, axxxx ;K,Kx)

where A2 = 2Kxx − a2axxxxx + 2aatxxx is a solution of (A.5).
If one follows the same procedure up to the seventh equation of (A.3), one will end up with

J = J (B1; a, at , ax, atx, axx, axxx ;K)
where

B1 = a
(
2Kxx − a2axxxxx + 2aatxxx − attx

)
+ axatt − 5axKx − 3aaxatxx .

Proceeding in a similar way successively, one can obtain equation (16).
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